"The Fellowship virtually opened up the way to collaborating with many scientists from the UK"

Dr Robert Kajobe Overseas Bursary and Fellowship Award Winner

Haldane Prize

Haldane Prize

The Functional Ecology JBS Haldane Early Career Researcher Award is given is given each year to the best paper in the journal by an early career author at the start of their career.   The winner of the Haldane early career researcher award will receive £250, membership of the BES, a year’s subscription to Functional Ecology, and a contribution to the costs incurred in attending the BES Annual Meeting in the UK if they wish to give a presentation on their work.  The winner is selected by the Editors of Functional Ecology at the end of each year and an announcement is made early in the New Year following.

If the first author of a paper considers that they are eligible for this award they are invited to nominate themselves during the submission process of Manuscript Central. Those nominated are in the early stages of their research career.

Further Information:

Journal homepage
Publications homepage
Virtual Issue: BES Early Career Researcher Awards 2015

Winner of the Haldane Prize 2015

Brian Steidinger
Haldane2015Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species
Brian S. Steidinger, Benjamin L. Turner, Adriana Corrales and James W. Dalling (Functional Ecology, 29:1, pp 121–130)

Soil phosphorus is as essential as water for plant growth, but its low availability in some areas forces plants to develop different strategies to acquire it. Mycorrhizal associations, symbiotic associations between a fungus and a vascular plant, represent the most common strategy for access to the different pools of soil P by plants and it therefore seems reasonable to assume that different symbiotic fungal species will be differently able to exploit this non-renewable resource and that non-mycorrhizal species could have a competitive disadvantage.

Brian Steidinger and his co-authors tested this hypothesis by comparing phosphatase enzyme activity and performance of five tropical tree species belonging to different functional groups: arbuscular mycorrhizal angiosperms, arbuscular mycorrhizal conifers, ectomycorrhizal angiosperms and non-mycorrhizal proteoid plants. Their findings brought up the surprising result that the non-mycorrhizal Proteaceae trees exhibit a greater potential for exploiting recalcitrant organic P directly relative to mycorrhizal tree species and thus, could facilitate the coexistence of these functional groups.

This paper makes a significant contribution not only by revealing that P partitioning applies primarily at a coarser level among functional groups (non-mycorrhizal versus mycorrhizal), but also that another large pool of soil P exists for mobilization.

Brian received his Master’s Degree at the University of Illinois Urbana-Champaign, in the lab of Jim Dalling. Brian’s thesis work brought him to the montane tropical forests along the Panama’s Central Cordillera, which contain plants belonging to different functional groups with respect to phosphorus (P)-acquisition. Specifically, he determined whether these plants have the potential to exploit different organic P compounds, a process that can facilitate coexistence by reducing how much neighboring plants compete for the same soil P pools.

As a PhD candidate at the Indiana University, he investigated how horizontal mutualisms—like those between plants and mycorrhizal fungi—can be stabilized against exploitation by cheaters. To do this, he created general models that can be applied to broad classes of symbiotic interactions that share similar properties, such as how cheaters are punished (via sanctions) or mutualists rewarded (via preferential allocation of resources). These models demonstrate how conflict of interest within mutually beneficial interactions can give rise to coexistence among functionally diverse communities of hosts and their symbionts.

Winner of the Haldane Prize 2014

Scott Ferrenberg
Publ_FEC_YIP2014 Scott FerrenbergThe 2014 Haldane Prize winner is Scott Ferrenberg for his paper Smooth bark surfaces can defend trees against insect attack: resurrecting a ‘slippery’ hypothesis co-authored with Jeffry B. Mitton (Functional Ecology, 28: 837–845).

The concept of smooth bark on trees and shrubs acting as an anatomical defence against epiphytic vegetation and phytophagous insects has, for some time, fallen out of favour. Ferrenberg and Mitton, in a study of bark beetle attack on Pinus flexilis – a pine species that exhibits both smooth and rough bark surfaces – set out to test the role of bark defence against insects. Their study involved both field surveys and experiments in the Colorado Rocky Mountains, USA. Results were strikingly straightforward: bark beetle attacks were overwhelmingly located on rough bark surfaces and virtually absent from smooth bark. Experimental tests of bark beetles’ ability to grip smooth versus rough bark revealed that bark beetles have difficulty gripping and quickly fell from smooth bark but not from rough bark. They also found that even partial coverage by smooth bark on a tree’s trunk significantly reduced total bark beetle attacks. In short, using a simple but rigorous combination of empirical and observational approaches Ferrenberg and Mitton resurrected the Smooth Bark Defence Hypothesis! Similar to other forms of anti-insect defence, smooth bark also appears to be influenced by plant ontogeny whereby younger trees have greater defences than older trees.

Scott developed an interest in plant-insect interactions at the University of Maryland, College Park, USA where he completed an MSc in entomology with the late Robert Denno. A lifelong fascination with western North America’s conifer forests led him to a research position in Sequoia National Park, California, where he began studies of bark beetle responses to trees injured by prescribed fires. Interest in evolutionary aspects of the bark beetle-conifer system pulled Scott to the University of Colorado, Boulder, where he completed his PhD in 2014 under the guidance of Jeffry Mitton. His time at the University of Colorado allowed his to pursue a wide range of research projects, in addition to his dissertation work on conifers, and he now pursues a diverse set of question in population and community ecology. Scott is currently a postdoctoral scientist at the U.S. Geological Survey’s Canyonlands Research Station in Moab, Utah, where he studies the impacts of climate change on biological soil crust and plant communities.

Winner of the Haldane Prize 2013

Kyle Demes

Publ_FEC_YIP2013 Kyle Demes
The 2013 prize for the best paper by a young author is Kyle Demes for his paper:
Survival of the weakest: increased frond mechanical strength in a wave-swept kelp inhibits self-pruning and increases whole-plant mortality (Functional Ecology, Volume 27, Issue 2: 439-445)
Kyle W. Demes, Jonathan N. Pruitt, Christopher D.G. Harley and Emily Carrington

Survival of the weakest seems an unlikely title for paper in ecology, but this is exactly what Demes et al. found. They studied intra-specific variation in mechanical properties in the kelp species Egregia menziesii in an intertidal habitat and found that weak individuals succeeded. Intertidal habitats (areas between high and low tides) are mechanically among the most stressful in the world, as the hydrodynamic forces to which plants are exposed are considerably larger than wind forces on terrestrial plants. Intriguingly Demes et al. showed that plants benefited from mechanical weakness rather than strength. In weak plants fronds were readily lost under hydrodynamic forces reducing their exposed area and thus the magnitude of the force. Strong plants, on the other hand, held on to their fronds until the build-up of force was so large that the whole plant collapsed. Thus the weak prevailed.

During undergraduate studies at the University of South Florida, Kyle was inspired by the incredible diversity of form and function among seaweeds and has been enamoured with their biology ever since. He completed a M.Sc. at Moss Landing Marine Laboratories in California with Michael Graham, where he examined the relative contributions of shifting environmental factors on sexual vs. asexual reproductive investment in wave-swept kelp. After battling oceanic waves for data collection during his Master’s, Kyle began researching the morphological and mechanical adaptations of seaweeds that allow them to thrive in the wave-swept intertidal, one of the most mechanically hostile habitats on the planet. His PhD, with Chris Harley at the University of British Columbia, focused on integrating mechanical principles into ecological processes. Kyle is now a post-doc at Simon Fraser University, assessing biotic and abiotic control of kelp forest dynamics along the coasts of British Columbia.

Winner of the Haldane Prize 2012

Ulrike Lampe

Publ_FEC_YIP2012 Ulrike LampeThe 2012 prize for the best paper by a young author is Ulrike Lampe for her paper:
Staying tuned: grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components (Functional Ecology, Volume 26, Issue 6: 1348-1354)
Ulrike Lampe, Tim Schmoll, Alexandra Franzke and Klaus Reinhold

Germany’s massive Autobahn highways are the last place most biologists want to spend their time.  However, as Lampe et al. showed, important biology happens next to these acoustic monstrosities.  Generations of grasshoppers have lived out their lives singing amidst the 24-hour noise of these highways.  This intense anthropogenic noise has resulted in measurable changes in their songs.  Specifically, males increase the frequency of one of the high amplitude frequency components (a local frequency maximum) of their songs.  An increase in frequency to circumvent the frequency bandwidth of human-generated noise has also been shown in other taxa, further supporting this phenomenon as a general strategy in bioacoustic systems.  While whales, anurans and songbirds have garnered much of the attention in studies of the effects of human-generated noise in bioacoustic systems, few studies have rigorously demonstrated the long-term consequences of anthropogenic noise for invertebrates.  Kudos to Lampe et al. for doing research in the acoustic wastelands of our highways and making fascinating discoveries in the process.

Ulrike Lampe finished the Systems Biology of Brain and Behaviour M.Sc. programme at Bielefeld University in 2009. In her master’s thesis she investigated risk-sensitivity in honey bees as a response to variance in reward. Before beginning her PhD studies there in summer 2010, Ulrike continued to work at the Department of Evolutionary Biology in Bielefeld on a small project about sex ratios in Greek bush crickets being dependent on habitat type and hatching date. Her PhD project on the effects of anthropogenic noise on acoustic communication in the bow-winged grasshopper started in July 2010. The project is supervised by Klaus Reinhold and Tim Schmoll. During the summer of 2012, Ulrike worked on experiments to clarify the evolutionary mechanisms behind the elevated frequency maximum in the songs of grasshoppers from roadside habitats. She plans to finish her PhD in summer/autumn 2013 and is currently working on the next chapters of her thesis that will be based on the new results.

Winner of the Haldane Prize 2011

Julia Cooke

Publ_FEC_YIP2011Julia CookeThe 2011 prize for the best paper by a young author is Julia Cooke for her paper:
Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? (Functional Ecology, Volume 25, Issue 6: 1181-1188.)
Julia Cooke and Michelle Leishman

The paper by Cooke and Leishman addresses the question of whether silicon plays a role in the leaf dry mass spectrum of plants, in which leaf longevity is a fundamental trait. The hypothesis that high silicon concentration prevails in shorter lived leaves and is lower in long lived leaves has previously been applied to grasses, particularly in an agronomic setting, where it is widely recognised that silicon ameliorates numerous biotic and abiotic stresses. By comparison, silicon has been given less attention by plant ecologists.

This work is novel in that it extends investigations to a much wider assortment of plant functional types and phylogenetic groups and finds a negative correlation between silicon content and leaf longevity across this broad range of species. The paper suggests that silicon forms part of the leaf dry mass spectrum and could substitute for carbon allowing a more favourable carbon balance. As such it makes a significant contribution to the argument that the evolution of higher leaf silicon content has been associated with a shift towards shorter leaf longevity and towards a more favourable leaf carbon strategy for short-lived leaves. Finally, the work lays out an exciting area for future research in the functional ecology of silicon, which may be metabolically cheaper, but less versatile than carbon. (Matthew Turnbull, Associate Editor, Functional Ecology)

Listen to Alan Knapp, Editor, Functional Ecology interview Julia about her paper:

Julia Cooke completed a BA/BSc (Hons) at the Australian National University, Canberra in 2003. Her Honours thesis examined the invasion history and ecology of Carrichtera annua (Brassicaceae) a weed of the southern rangelands of Australia. From 2003-06 she worked with Michelle Leishman investigating leaf carbon strategies of invasive species in their native and exotic ranges and the impacts of ecosystem diversity, propagule pressure and nutrient addition on invasion success. Julia completed her PhD in 2011 on the functional ecology of plant silicon at Macquarie University under the supervision of Michelle Leishman. Julia’s research demonstrated that silicon is an important element in plant ecology with complex roles in the leaf dry mass economic spectrum, abiotic stress alleviation, herbivory and biomechanical resistance. The paper in Functional Ecology formed part of her thesis. She is currently a post-doctoral fellow at Macquarie University with Ian Wright and Mark Westoby, working on scaling functional traits to whole plant growth. Julia is also the author of a children’s book that focuses on the natural history of Black Mountain in Canberra, Australia. Julia Cooke’s website

Winner of the Haldane Prize 2010

Cécile Albert

Publ_FEC_YIP2010 Cecile AlbertThe 2010 prize for the best paper by a young author is awarded to Cécile Albert for her paper:
A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits (Functional Ecology, Volume 24, Issue 6, Pages 1192-1201)
Cécile Hélène Albert, Wilfried Thuiller, Nigel Gilles Yoccoz, Rolland Douzet, Serge Aubert and Sandra Lavorel

Recent years have seen an explosive growth in measurement of plant traits, spurred on by the recognition that plant function is more important than plant identity, and that wholly unrelated plants can have very similar traits. Traits are now used to study the fundamental constraints on plant evolution, to understand ecosystem function and to explain community assembly. Implicit in nearly all this work has been the belief (maybe ‘hope’ is a better word) that variation in traits within species is negligible compared to variation between species, and specifically that worthwhile results can be obtained by using mean species values (often extracted from published databases). Cécile Albert and her co-authors tested this assumption through an extremely detailed study of traits of 13 common species in the French Alps. The work involved much painstaking field sampling and great care was also taken in the analysis and presentation of the results; helpful figures show trait variation between species, populations and individuals, and also how likely you are to mistake the leaves of one species for another, based on its trait values.

For those busily engaged in measuring and interpreting plant traits, Cécile’s findings provide both good and bad news. Most trait variation (about 70 % on average) is found between species, and major axes of trait variation are robust to variation within species. On the other hand, variation within species is far from negligible, and for some traits, and some purposes, one could be led into error through unquestioning use of species’ mean values. Referees described this paper as ‘extremely interesting’ and thought it asked questions that were ‘interesting, timely, important and well tested’; one thought it was ‘one of the more important papers that I have read in quite a while’, and I wouldn’t disagree at all. A worthy winner with a message that deserves to be carefully digested by anyone engaged in plant trait research. (Ken Thompson, Editor, Functional Ecology)

Cécile Albert entered the École Polytechnique (Paris, France) a famous French engineering school in 2002. In 2006, she received her MSc in Theoretical ecology and modelling from the Institut National d’Agronomie Paris-Grignon (Paris, France). She obtained her PhD degree in 2009 on quantifying intraspecific functional trait variability, disentangling its relative importance compared to interspecific variability and testing its impact on functional diversity indices under the supervision of Wilfried Thuiller and Sandra Lavorel at the Laboratory of Alpine Ecology (LECA, CNRS-Univ. J. Fourier, Grenoble, France). Cécile is currently a postdoctoral fellow at McGill University (Montréal, Canada) in collaboration with Andrew Gonzalez. She is working at the interface between functional ecology, plant ecology, community ecology, biogeography and ecological modelling.

Winner of the Haldane Prize 2009

Cassie Majetic

Publ_FEC_YIP2009_Cassie MajeticThe editors are pleased to announce the winner of the Haldane Prize for the best paper by a young investigator published in Functional Ecology during 2009 is Cassie Majetic for her paper:
The sweet smell of success: floral scent affects pollinator attraction and seed fitness in Hesperis matronalis (Functional Ecology Volume 23, Issue 3, Date: June 2009, Pages: 480-487)
Cassie J. Majetic, Robert A. Raguso, Tia-Lynn Ashman

In her paper, Cassie Majetic and co-authors make an important contribution to an emerging area of study, namely the ecology and evolution of floral scent.

Biologists are used to evaluating adaptations by describing how variation in form affects function, but the investigation of floral scent is adding a new chapter to the catalogue of floral adaptations. Here, Majetic et al. have embarked on an ambitious programme to dissect the functional significance of floral scent in insect-pollinated Hesperis matronalis (Brassiciaceae) by complementary manipulative experiments. This species attracts pollinators during both day and night – different types, of course – and the interest is in finding out the importance of these two temporally separate processes. The design is elegant and techniques ingenious; in their study, diurnal and nocturnal scents are separated and augmented – to achieve this, modern technology is deployed along with artificial scent emitters that are the product of traditional ecologist’s tinkering (using coffee filters and, almost certainly, duct tape) – and diurnal and nocturnal pollinators are separately excluded, before seed set is measured. Impressively, these causal components are allowed to reassemble in an open field experiment.

After rigorous and adept statistical treatment, the picture that emerges is nevertheless complex and, in some ways, perplexing – the manipulative experiments suggest that variation among individual plants affects fitness primarily by influencing diurnal pollinators, whereas the responses of nocturnal pollinators determine variation in seed set in the open field experiments. Notwithstanding, Majetic et al. provide a cogent summary of the key import of their findings, while nevertheless pointing out some ecological tangles. Senior ecologists seeking a stylistically model paper for PhD students coping with writing up that ‘difficult data set’ would do well to recommend Majetic et al. Finally, I expect that this paper will have significant impact – resolving these complexities will keep the scientists busy here and inspire others to look into related issues in new study systems. Overall, a deserved award to a paper that deserves a read. (James Cresswell, former Editor, Functional Ecology)

Cassie Majetic received her BS from Allegheny College (Meadville, Pennsylvania, USA) in 2002, majoring in Biology. In 2008, she graduated from the Department of Biological Sciences’ Ecology and Evolution program at the University of Pittsburgh (Pittsburgh, Pennsylvania, USA). Following graduation, she returned to Allegheny College’s Department of Biology, where she spent last year as a visiting assistant professor. Cassie is currently in her first year as an assistant professor in the Department of Biology at Saint Mary’s College, a liberal arts women’s college in Notre Dame, Indiana, where she teaches evolution, environmental biology, and several botanical courses. Her research continues to focus on the biochemical connections between floral scent and floral colour, the ecological implications of scent on pollination biology, and the evolutionary trajectory of floral scent in a number of plant species.

Winner of the Haldane Prize 2008

Carol Sparling

Publ_FEC_YIP2008 Carol SparlingThe 2008 Haldane prize for the best paper published by a new researcher in Functional Ecology has been awarded to Carol Sparling for her paper: “Estimating field metabolic rates of pinnipeds: doubly labelled water gets the seal of approval” (Functional Ecology, Volume 22, Issue 2, Pages: 245-254)
C. E. Sparling, D. Thompson, M. A. Fedak, S. L. Gallon, J. R. Speakman

In this study Sparling et al compared 32 metabolic rate measurements using both indirect calorimetry and the doubly labeled water (DLW) method in 9 individual grey seals.  The study took 3 years of lab work and many people hours to complete. Measurements were carried out in a one of a kind large sea water pool that allowed the animals to swim and dive much like they would in the wild.  Furthermore, their study was quite rigorous and took into account the important components that could cause errors in the method, including changes in body mass, analytical error as well as potential errors in determination of water space.  The end result is one of the most complete validations of the DLW method yet accomplished. While this work is important to the marine mammal research community it has relevance to anyone interested in completing field metabolic rate measurements on large vertebrates.

Carol studied Zoology at Aberdeen University before moving to the Sea Mammal Research Unit at the University of St Andrews to carry out her doctoral research with Professor Mike Fedak, obtaining her PhD in 2003.  She continued her postdoctoral research at St Andrews until 2007 and conducted the research for her paper during this time.  She still maintains her seal research at the Unit on a part-time basis.

Carol is also currently working as a senior ecologist with a private consultancy, working with government agencies, conservation bodies and private developers on various projects throughout the UK and Eire in the fields of ecological restoration, habitat management and wildlife management.

Comments are closed.

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close