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Natalie Cooper, Natural History Museum, UK

Pen-Yuan Hsing, Durham University, UK

The way we do science is changing — data are getting 
bigger, analyses are getting more complex, and 
governments, funding agencies and the scientific method 
itself demand more transparency and accountability in 
research. One way to deal with these changes is to make 
our research more reproducible, especially our code. 

Although most of us now write code to perform our analyses, it is often not very 
reproducible. We have all come back to a piece of work we have not looked at for 
a while and had no idea what our code was doing or which of the many "final_
analysis" scripts truly was the final analysis! Unfortunately, the number of tools for 
reproducibility and all the jargon can leave new users feeling overwhelmed, with no 
idea how to start making their code more reproducible. So, we have put together this 
guide to help.

A Guide to Reproducible Code covers all the basic tools and information you will 
need to start making your code more reproducible. We focus on R and Python, but 
many of the tips apply to any programming language. Anna Krystalli introduces 
some ways to organise files on your computer and to document your workflows. 
Laura Graham writes about how to make your code more reproducible and readable. 
François Michonneau explains how to write reproducible reports. Tamora James 
breaks down the basics of version control. Finally, Mike Croucher describes how 
to archive your code. We have also included a selection of helpful tips from other 
scientists.

True reproducibility is really hard. But do not let this put you off. We would not expect 
anyone to follow all of the advice in this booklet at once. Instead, challenge yourself 
to add one more aspect to each of your projects. Remember, partially reproducible 
research is much better than completely non-reproducible research.

Good luck!

Introduction



2

Commit the code
to version control

p32

Project workflow

• Choose a project folder structure. p6

• Choose a file naming system. p7

• Choose a coding style. p10

• Install and set up your version control   

 software. p29

• Set up an online version control account. p29

Before you start

• Create the project folder and subfolders. p8

• Add a README file describing the project. p6

• Create a version control repository for the
 project using git or similar. p28

• Connect the version control repository to an 
 online remote repository. p32

• Add a LICENSE file. p36

• Create a new reproducible report for the 
 project. p20

First steps

Write some code
p10

Preparing for publication
• Record the versions of all the packages and software you used p18

• Update the README to contain details of the project workflow, package versions etc.

• Get a friend or colleague to check all your documentation makes sense and nothing is missing

• Add additional documentation if needed. This is vital if you are writing a package for others to use

• Add a LICENSE file if you have not already added one p36

• Make your online remote repository public if it was private p28

• Archive the code and get a DOI so it can be cited p36

• Remember to archive and document your data too! (BES Guide to Data Management)

• Bask in the glory of you reproducible masterpiece and watch the citations come in!

Sync with your
remote version

control repository
p32

Comment
the code

p11

A simple reproducible project workflow
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1 British Ecological Society: A Guide to Data Management in Ecology and Evolution.

Organising projects for reproducibility

Anna Krystalli, University of Sheffield, UK

The repeatable, reproducible analysis workflow

The fundamental idea behind a robust, reproducible analysis is a clean, repeatable 
script-based workflow (i.e. the sequence of tasks from the start to the end of a 
project) that links raw data through to clean data and to final analysis outputs. Most 
analyses will be re-run many times before they are finished (and perhaps a number of 
times more throughout the review process), so the smoother and more automated 
the workflow, the easier, faster and more robust the process of repeating it will be. 

Principles of a good analysis workflow

 • Start your analysis from copies of your raw data. 

 • Any cleaning, merging, transforming, etc. of data should be done in scripts,
  not manually. 

 • Split your workflow (scripts) into logical thematic units. For example, you might 
  separate your code into scripts that (i) load, merge and clean data, (ii) analyse 
  data, and (iii) produce outputs like figures and tables.

 • Eliminate code duplication by packaging up useful code into custom functions 
  (see Programming). Make sure to comment your functions thoroughly, 
  explaining their expected inputs and outputs, and what they are doing and why.

 • Document your code and data as comments in your scripts or by producing 
  separate documentation (see Programming and Reproducible reports). 

 • Any intermediary outputs generated by your workflow should be kept separate 
  from raw data.

Organising and documenting workflows

The simplest and most effective way of documenting your workflow – its inputs 
and outputs – is through good file system organisation, and informative, consistent 
naming of materials associated with your analysis. The name and location of files 
should be as informative as possible on what a file contains, why it exists, and how it 
relates to other files in the project. These principles extend to all files in your project 
(not just scripts) and are also intimately linked to good research data management, 
so check the BES Guide to Data Management in Ecology and Evolution 1 for more 
information.
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 Choose filenames so that alphabetical sorting will organise types of files for  
 you: in the same way that ISO 8601 puts the most significant unit (year) first so  
 that alphabetical = chronological. – Hao Ye, UC San Diego

File system structure

It is best to keep all files associated with a particular project in a single root directory. 
RStudio projects offer a great way to keep everything together in a self-contained and 
portable (i.e. so they can be moved from computer to computer) manner, allowing 
internal pathways to data and other scripts to remain valid even when shared or 
moved (see Programming). An exception can be code associated with a number of 
projects that may live in its own directory (although you could consider making this 
into a package, see r-pkgs.had.co.nz/ for advice on making packages in R).

 
 Embrace a one folder = one project mentality. Rstudio's "R projects" are excellent 
 for encouraging this. This habit enables easy communication with other 
 scientists and for that reason it is so important. – Anonymous

There is no single best way to organise a file system. The key is to make sure that the 
structure of directories and location of files are consistent, informative and works 
for you. 

Here is an example of a basic project directory structure:

 • The data folder contains all input data (and metadata) used in the analysis. 

 • The doc folder contains the manuscript.

 • The figs directory contains figures generated by the analysis.

 • The output folder contains any type of intermediate or output files (e.g.   
  simulation outputs, models, processed datasets, etc.). You might separate this  
  and also have a cleaned-data folder.

 • The R directory contains R scripts with function definitions.

 • The reports folder contains RMarkdown files that document the analysis or  
  report on results.

Organising projects for reproducibility
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 • The scripts that actually do things are stored in the root directory, but if your 
  project has many scripts, you might want to organise them in a directory of
  their own.

 Never ever touch raw data. Store them permanently, and use scripts to 
 produce derived, clean datasets for analyses.
 – Francisco Rodríguez-Sánchez, Estación Biológica de Doñana (CSIC)
 

Fig 1. Example file structure of a simple analysis project

 For every project, keep a text document in which you record what you did 
 and any rationale, concerns, ideas, etc., that go with it. If you are working on the 
 command line (e.g. using QIIME), copy and paste the exact commands you used 
 into this document. It will allow you to retrace your steps and train of thought 
 at a later date. – Sarah Johnson, Cardiff University

Organising projects for reproducibility
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Folder structure 

 • Be consistent – when developing a naming scheme for folders it is important 
  that once you have decided on a method, you stick to it. If you can, try to agree 
  on a naming scheme at the start of your research project.

 • Structure folders hierarchically. Start with a limited number of folders for the 
  broader topics, and create more specific folders within these as and when they 
  are required.

 • Include a README file to describe the project and provide some basic orientation 
  around project files. Good naming of files should take care of the rest, and 
  remember to describe the naming scheme in the README file.

 • For files that cannot be commented or described easily by name, include file 
  specific READMEs in your folders that describe metadata such as the contents 
  of the file, sources of the contents, links to relevant papers or data repositories, 
  the units of the measures included in data columns, etc.

 • If you are making your work public for others to reuse, make sure you include an 
  appropriate license (see Archiving).

 • Quarantine inputs and materials given to you by others (i.e. keep it in a separate 
  folder). Rename and repurpose into your own file system, recording what has 
  been done. Ensure provenance of inputs is tracked.

 • Keep track of ideas, discussions and decisions about analysis. An info folder 
  where you store important emails or idea drafts could work. Otherwise, many 
  online version control (see Version control) hosting services (such as, but not   
  limited to, GitHub) have issues management which provides a lot of useful 
  functionality for this purpose.

 • Separate ongoing and completed work: as you start to create lots of folders and 
  files, it is a good idea to think about separating older documents from those you 
  are currently working on.

Informative, consistent naming

Good naming extends to all files, folders and even objects in your analysis 
(see Programming) and serves to make the contents and relationships among 
elements of your analysis understandable, searchable and organised in a logical 
fashion. For example, informative, consistent naming can allow you to search 
for data generated during a specific time period, data generated by a particular 
script, analysis outputs generated using specific values of a parameter and objects 

Organising projects for reproducibility
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generated by a specific function.

 Examples of bad vs. good filenames

 BAD BETTER 
 01.R 01_download-data.R

 abc.R 02_clean-data_functions.R

 fig1.png fig1_scatterplot-bodymass-v-
    brainmass.png

 IUCN's metadata.txt 2016-12-01_IUCN-reptile_shapefile_  
    metadata.txt

Key principles of good file naming – make sure they are:

Machine readable 

 • Avoid spaces, punctuation, accented characters and case sensitivity.
  More specifically, stick to "a-zA-Z0- 9_" characters. Use periods/full stops for file 
  type only (i.e. .csv).

 • Use delimiters to separate and make important metadata information (for 
  example parameter values used in an analysis) retrievable further down the line. 
  Use delimiters consistently, i.e. “_” to separate metadata to be extracted as 
  strings later on and “-” instead of spaces or vice versa but do not mix. This makes 
  names easy to match and search programmatically and easy to analyse.

Human readable

 • Ensure file names also include informative description of file contents. 

 • Adapt the concept of the slug to link outputs with the scripts in which they
  are generated.

Easy to order by default

 • Starting file names with a number helps.

 • For data, this might be a date allowing chronological ordering. 

 • Make sure to use ISO 8601 format (YYYY-MM-DD) to avoid confusion between 
  differing local dating conventions.

 • For scripts, you could use a number indicating the position of the scripts in the 
  analysis sequence e.g. 01_download-data.R

Organising projects for reproducibility
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 • Make sure you left-pad single digit numbers with a zero or you will end up with 
  this:
  10_final-figs-for-publication.R
  1_data-cleaning.R
  2_fit-model.R

Going back to our example project folder, in addition to the structure, note how good 
file naming and the use of slugs helps link scripts with their inputs and outputs. 

Fig 2. Linking analysis associated files (e.g. R scripts with functions) and outputs 
(generated figures) through the use of consistent naming.

Now that you have set up a workflow and organised your project, you can go on to 
writing code!

Organising projects for reproducibility
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Laura Graham, University of Southampton, UK

Writing code

Writing clear, reproducible code has (at least) three main benefits. Firstly, it makes 
returning to the code much easier a few months down the line; whether revisiting 
an old project, or making revisions following peer review. Secondly, the results of 
your analysis are more easily scrutinised by the readers of your paper, meaning it is 
easier to show their validity. Thirdly, having clean and reproducible code available 
can encourage greater uptake of new methods that you have developed. 

To write clear and reproducible code, we recommend the following workflow:

write functions 6program defensively 6comment 6test 6document

In the following section we explain each part of this workflow along with some 
other tips for writing code. Although this workflow would be the ‘gold standard’, 
just picking up some of the elements can help to make your code more effective and 
readable. 

 
 For longer tasks plan your code using diagrams or pseudocode first.
 – Samantha Price, Clemson University

Style guides

The foundation of writing readable code is to choose a logical and readable coding 
style, and to stick to it. Some key elements to consider when developing a coding 
style are:

 • Using meaningful file names (see Organising projects for reproducibility),
  and numbering these if they are in a sequence.

GOOD
01-download-data.R

BAD 
abc.r

 • Concise and descriptive object names. Variable names should usually be nouns 
  and function names verbs. Using names of existing variables or functions should 
  be avoided.

Programming
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Programming

GOOD
species_dat

BAD
data_from_site_one
sd

 • Spacing should be used to improve visual effect: use spaces around operators
  (=, +, -, <-, etc.), and after commas (much like in a sentence).

 • Indentation should be with spaces, not tabs, and definitely not a mixture of tabs 
  and spaces.

The most important role of a style guide, however, is to introduce consistency to 
scripts. For more detailed information on style guides, and formalised approaches, 
see Google 2 and Hadley Wickham’s R Style Guides 3, and the Python Style Guide 4. 

Commenting code

How often have you revisited an old script six months down the line and not been 
able to figure out what you had been doing? Or have taken on a script from a 
collaborator and not been able to understand what their code is doing and why? An 
easy win for making code more readable and reproducible is the liberal, and effective, 
use of comments. A comment is a line of code that is visible, but does not get run with 
the rest of the script. In R and Python this is signified by beginning the line with a #. 

One good principle to adhere to is to comment the ‘why’ rather than the ‘what’. The 
code itself tells the reader what is being done, it is far more important to document 
the reasoning behind a particular section of code or, if it is doing something non-
standard or complicated, to take some time to describe that section of code. 

It is also good practice to use comments to add an overview at the beginning of a 
script, and commented lines of ‘---’ to break up the script:

e.g. in R

# Load data --------------------------------------------------

Use feedback from others who use your code (such as labmates) to make the 
code more readable. For example, if your labmate misunderstands a function, 
rewrite the comments for that function. – April Wright, University of Iowa
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Programming

Portable code

When working collaboratively, portability between machines is very important, i.e. 
will your code work on someone else’s computer? Portability is also important if code 
is being run on another server, for example a High Performance Cluster. One way to 
improve portability of code is to avoid using absolute paths and use only relative 
paths 5 , ensuring that the script is run from the project root folder (see Organising 
projects for reproducibility). An absolute path is one that gives the full address to 
a folder or file. A relative path gives the location of the file from the current working 
directory. For example:

# Absolute path -----------------------------
“C:/project_root_folder/data/species_dat.csv”

# Relative path ------
“data/species_dat.csv”

Relative paths are particularly useful when transferring between computers because 
while I may have stored my project folder in ‘D:/projects’, you may have yours stored 
in ‘C:/Users/My Documents’. Using relative paths and running from the project folder 
will ensure that file-not-found errors are avoided. 

When working in R, RStudio projects can help aid portability of code. RStudio projects 
provide a self-contained coding environment to work in, and when opened, a .Rproj 
file sets the project working directory and saves the history and state of the project. 
RStudio projects can be created directly from the RStudio GUI and can be created 
in an existing folder, a new empty folder, or checked out from a version control 
repository (see Version control).

Writing functions

Often when you are analysing data, you need to repeat the same task many times. 
For example, you might have several files that all need loading and cleaning in the 
same way, or you might need to perform the same analysis for multiple species or 
parameters. The first instinct when faced with such a task would be to copy and paste 

2https://google.github.io/styleguide/Rguide.xml accessed November 2017
3http://adv-r.had.co.nz/Style.html accessed November 2017
4https://www.python.org/dev/peps/pep-0008/ accessed November 2017
5https://en.wikipedia.org/wiki/Path_(computing)#Absolute_and_relative_paths accessed November 2017
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previous blocks of code to repeat these tasks. This, however, is likely to introduce 
errors into your code, and therefore limit reproducibility. You can use functions to 
repeat tasks in a more standardised way. Using functions allows you to break your 
code down into modules, and therefore has the added advantage that it helps to 
provide better structure to scripts.

A function is a self-contained block of code that performs a single action. A function 
takes in a set of arguments, applies the action, and returns an object of any data 
type. A function should not rely on data from outside of the function, and should not 
manipulate data outside of the function.

Below are examples of how to define your own functions in R and in Python:

# Create a user-defined function in R:
square_number <- function(base){
         square <- base*base
         return(square)
}
# Calling a user-defined function in R
square_number(5)

Note that the function above takes in one number as an argument, base, squares 
this number, then returns one number as the output. The body of the function 
is enclosed within rounded brackets. You are asking R to return the result using 
return (square) (this is not strictly needed in this example, but using return 
saves problems when writing more complicated functions). In R, most functions 
are vectorised. This means that if you pass a vector to a function, the action will be 
applied to each element of the vector and the resulting new vector output. 

# Create a user-defined function in Python:
def square_number(base):
      square = base*base
      return(square)

# Calling a user-defined function in Python:
x_square = square_number(5) 

Programming
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6 http://adv-r.had.co.nz/Functional-programming.html accessed November 2017

Again, the function takes in one number as the argument and outputs the square 
of this number. In Python, a colon defines the start of the function, and the body of 
the function is always indented (indentation marks blocks of code in Python). Python 
functions are not vectorised, so to get the output of a function applied to a list of 
numbers, you need to use the in-built map function:

# Calling a user-defined function element-wise on a list in Python:
squared_list = map(square_number, [1,2,3,4,5])

You can extend functions to include additional arguments. For example, if you 
wanted to define your function so that the output is the input number to a specific 
power, not just the square, you could include an additional argument to specify the 
exponent. 

# Additional argument to R function:
exp_number <- function(base, power) {
            exp <- base^power
            return(exp)
}

You can expand upon these principles and include more arguments and apply more 
complicated functions to these arguments. The key to writing functions is to perform 
a single action per function, not rely on objects from outside the function, and not 
change objects outside the function. For more information on functions, see Hadley 
Wickham’s Advanced R guide to functional programming. 6

Defensive programming

Defensive programming is a technique to ensure that code fails with well-defined 
errors, i.e. where you know it shouldn’t work. The key here is to ‘fail fast’ and ensure 
that the code throws an error as soon as something unexpected happens. This 
creates a little more work for the programmer, but makes debugging code a lot easier 
at a later date. 

You can employ defensive programming on the  exp_number function defined 
above. The function requires that both arguments are numeric, if you were to provide 
a string (e.g. a word) as input, you would get an error:

Programming
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exp_number(“hello”, 2)
Error in base^power : non-numeric argument to binary operator

If you add in a line of code to test the data type of the inputs, you get a more 
meaningful error. 

exp_number <- function(base, power) {
   if(class(base) != "numeric" | class(power) != "numeric"){
      stop("Both base and power inputs must be numeric")
   }  
   exp <- base^power
   return(exp)
}

exp_number(“hello”, 2)
Error in exp_number("hello", 2) : 
  Both base and power inputs must be numeric

Although in this case, debugging the error would not have taken long anyway, in more 
complicated functions you are likely to either have less meaningful error messages, 
or code that runs for some time before it fails. By applying defensive programming 
and adding in these checks to the code, you can find unexpected behaviour sooner 
and with more meaningful error messages. 

Testing scientific code

In the experimental sciences, rigorous testing is applied to ensure that results are 
accurate, reproducible and reliable. Testing will show that the experimental setup 
is doing what it is meant to do and will quantify any systematic biases. Results of 
experiments will not be trusted without such tests; why should your code be any 
different? Testing scientific code allows you to be sure that it is working as intended 
and to understand and quantify any limitations of the code. Using tests can also help 
to speed up the code development process by finding errors early on.

Most people will use informal testing by loading a function they have written 
and running ad hoc tests in the command line. Unit testing allows you to create 
formalised and automated tests of each section of your code. While unit testing may 
not be entirely necessary for many beginner coders, once you start writing your own 
functions, the recommended next step should be to start writing unit tests to go 

Programming
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along with these, and if you are writing packages these tests are essential. A guide 
to testing using the test-that package in R can be found in Hadley Wickham’s online 
R Packages book 7. For those using Python, the nose 8 package provides unit testing 
functionality.

Literate programming

The techniques described above are the building blocks for literate programming. 
Literate programming is a way of writing code so that it is clearly documented. Rather 
than writing code aimed at telling the computer what to do, you write code that tells 
other humans what you are instructing the computer to do (and why). Now that you 
have the building blocks, you can tie them together to achieve truly literate code. 
There are several tools that provide ways of doing this. For R, there is RMarkdown (see 
Reproducible reports), which allows you to integrate chunks of code into plain text 
written in the simple Markdown language. For Python, there are Jupyter 9 notebooks, 
which work in a similar way, integrating sections of code with sections of Markdown 
text. Markdown is a lightweight and straightforward markup language, which can be 
converted to many formats including HTML, PDF or even Word documents. It allows 
users to write plain text while using a few tags to format the text. The learning curve 
for Markdown is reasonably gentle. Here is some example Markdown text:

# This is header one
## This is header two

* here
* are
* some 
* bulletpoints

*this text is in italics*
**this text is bold**

Markdown is in plain text (as opposed to rich text) format so it is easily transferred 
between platforms and integrated into a version control system (see Version 
control). There will be more about using these tools to write reproducible reports in 
the next section. 

Programming

7 http://r-pkgs.had.co.nz/tests.html accessed November 2017
8 http://pythontesting.net/framework/nose/nose-introduction/ accessed November 2017
9 https://jupyter.org/ accessed November 2017
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Documenting and managing dependencies

François Michonneau, University of Florida, USA

Reproducibility is also about making sure someone else can re-use your code to 
obtain the same results as you. 

For someone else to be able to reproduce the results included in your report, you 
need to provide more than the code and the data. You also need to document the 
exact versions of all the packages, libraries, and software you used, and potentially 
your operating system as well as your hardware.

R itself is very stable, and the core team of developers takes backward compatibility 
(old code works with recent versions of R) very seriously. However, default values in 
some functions change, and new functions get introduced regularly. If you wrote 
your code on a recent version of R and give it to someone who has not upgraded 
recently, they may not be able to run your code. Code written for one version of a 
package may produce very different results with a more recent version.

Documenting and managing the dependencies of your project correctly can be 
complicated. However, even simple documentation that helps others understand 
the setup you used can have a big impact. The following are three levels of complexity 
to document the dependencies for your projects.

Show the packages you used

With R, the simplest (but a useful and important) approach to document your 
dependencies is to report the output of sessionInfo() (or devtools::session_
info()). Among other information, this will show all the packages and their versions 
that are loaded in the session you used to run your analysis. If someone wants to 
recreate your analysis, they will know which packages they will need to install.

Use packages that help recreate your setup

The checkpoint package in R provides a way to download all the packages at a given 
date from CRAN (The Comprehensive R Archive Network, cran.r-project.org). Thus, 
from the output provided by sessionInfo(), they could recreate your setup. It, 
however, makes two important assumptions: all your packages were up-to-date 
with CRAN at the time of your analysis; and you were not using packages that are 
not available from CRAN (e.g. the development version of a package directly from a 
git repository).

Programming
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Another approach is to use the packrat package. This package creates a library (a 
collection of packages) directly within your analysis directory. It increases the size 
of your project as all the source code for the packages is included, but it ensures that 
someone can recreate more reliably the same environment as the one you used for 
your analysis. It also makes it easier because the installation of these packages is 
fully automated for the person wanting to have the same setup.

Use containers to share your setup

A step further in complexity is to use Docker (docker.com). With Docker you recreate 
an entire operating system with all the software, data, and packages needed for 
your analysis. It is more technical to set up but it allows you to distribute the exact 
same environment as the one you used. If you want others to be able reproduce your 
results, and your analysis depends on software that can be difficult to install, it is an 
option that might be worth exploring.

Programming
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François Michonneau, University of Florida, USA 

What is a reproducible report?

For the purposes of this guide, a report is a scientific document that contains not only 
the text that makes up the manuscript, but also the code that generates the figures 
and the statistics that are reported in your manuscript. Ideally, the report should be  
part of a self-contained project that may contain your data, your initial exploratory 
analyses, the final product, and the code needed to generate them. 

In this context, a manuscript can be a scientific article, a conference presentation, 
a technical report, or a document to share your progress with your collaborators. 
The end product may not show any code and therefore it may not look like it was 
generated in a different way to any other documents.

Typically a report contains code for data manipulation, data analysis, and figure 
generation alongside the text that constitutes the heart of the report. If left 
unchecked, this mix can lead to a big mess that can be difficult to maintain and 
debug. Below is some advice on how to keep your report manageable.

Why a reproducible report?

By automating how the figures and the statistics in your report are generated, you 
are leaving a code trail that you, your collaborators, or your readers can follow, and 
that leads to your original data. This path to the raw data increases the transparency 
of your science. However, for the six-months-in-the-future you, your collaborators, 
and your readers, to be able to follow this path, it is important that you organise your 
code and your data files consistently (see Organising projects for reproducibility).

Not only does writing a reproducible report increase the transparency of your 
science, it reduces the mistakes that result from copying and pasting across software, 
helps keep results and models in sync, and allows you to provide interested readers 
with more information about the different approaches and analyses you tried before 
coming up with the final results. 

These can be included as supplementary material or tagged in the history of your 
version control system (see Version control).

Reproducible reports
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Writing reports using RMarkdown

Programming languages typically used by scientists for data analysis have 
libraries or packages that can be used to generate reproducible reports. The most 
popular ones are Jupyter Notebooks for scientists who primarily use Python and 
RMarkdown for those who use R. While they both share many commonalities, 
their implementation and everyday applications differ. Here, we focus on 
RMarkdown.

RMarkdown is a file format (typically saved with the Rmd extension) that can 
contain: a YAML header (see Version control), text, code chunks, and inline code. 
The rmarkdown package converts this file into a report, most commonly into 
HTML or PDF.

The rmarkdown package automates a multi-step process (Fig 3). Under the hood, 
it calls the knitr package that converts the Rmd file into a markdown (.md) file. 
In the process, knitr takes all the code chunks and the inline code, runs them 
through R (or other programs), captures their output, and incorporates them in the 
report. Afterwards, rmarkdown calls the pandoc program (an external program 
that is not related to R) that can take the markdown file and converts it into a 
variety of formats. For pandoc to generate PDF files, you will need a functional 
installation of LaTeX that you will need to install separately.

The bookdown package helps with numbering the figures and tables, and dealing 
with citations. As its name suggests, this package can be used to author books, but 
it is also well-suited to generating reports.

Fig 3. Relationships among the different R packages and tools used to generate 
reports from RMarkdown files.

Reproducible reports
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Reproducible reports

Getting started

To start writing a report in rmarkdown, you can either open a file in your text editor 
of choice and save it with the .Rmd extension, or if you use RStudio, go to the File 
menu and then open a new RMarkdown file. You can then add a YAML header and 
various chunks as needed (see below).

The YAML header
The YAML header is at the top of your file; it is delineated by three dashes (---) at the 
top and at the bottom of it. They look like this:

---
title: "My reproducible report"
author: "BES"
date: "Today"
output: html_document
---

The YAML header is optional, but can be used to specify:

 • the characteristics of your document: the title, authors, date of creation. 
 • the arguments to pass to pandoc to control the format of the output and 
  additional information such as the bibliography file and the formatting of the 
  list of references (see below). 
 • parameters for your report: for instance, you can specify a parameter such 
  that your report will only use a subset of your data so that the final product will 
  be generated quickly when you are developing the code for your project. Once 
  your code is working, you can switch to the full dataset.

Code chunks
Code chunks are interspersed within the text of the report. They are delineated by 
three backticks (`` )̀ at the top and at the bottom. The top backticks are followed by 
a curly bracket that specifies: (1) the language in which the code chunk is written, (2) 
the name of the chunk (optional, but good practice), (3) knitr options that control 
whether and how the code, the output, or the figure are interpreted and displayed. 
Everything that comes after the name of the chunk has to be a valid R expression: the 
strings need be quoted, the arguments need to be separated by commas, and logical 
values (TRUE/FALSE) need to be capitalised.
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Figures

The knitr package provides many options to finely control how your figures are 
going to be generated. Some of knitr's options can be set individually for each 
chunk or be set globally. For a reproducible report, it is common practice to have a 
chunk at the beginning of the report that sets default options for the figures. It is 
also usually a good place to load all the packages you will need for your analysis. For 
instance the following chunk will ensure that:

 • all the figures generated by the report will be placed in the
  figures/sub-directory

 • all the figures will be 6.5 x 4 inches and centered in the text.

```{r figure-setup, echo=FALSE, include=FALSE}
knitr::opts_chunk$set(fig.path="figures/", fig.width=6.5,
                      fig.height=4, fig.align="center")
```

Additionally, this chunk will be named figure-setup, and we use the echo=FALSE 
option so the code for the chunk will not be displayed in the report, and use the 
include=FALSE option so no output produced by this chunk will be included in the 
report.

For our figures, we can now do

```{r sepal-width-length, fig.cap='Relation between sepal width 
and length in three species of _Iris_.'}
library(tidyverse)
iris %>%
    ggplot(aes(x = Sepal.Width, y = Sepal.Length, color = 
Species)) +
    geom_point()
```
When this file will be processed, it will create an image file (figures/sepal-
width-length.png) with the default dimension and the caption specified by 
the value of the fig.cap argument. You can use markdown formatting (see 
Programming) within the captions of your figures. This figure will have the label 
fig:sepal-width-length that you will be able to use for cross referencing.

Reproducible reports
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If you wish to incorporate a figure that is not generated by code (e.g. a photo of your 
field site or study organism), using the function knitr::include_graphics() 
takes care of many details for you, and generates labels and captions as if they were 
generated by code.

```{r iris-picture}
knitr::include_graphics("figures/iris.jpg")
```

Tables
To generate tables, knitr comes with the function kable that might be sufficient to 
make simple tables to represent data frames within your report. However, there are 
many packages that provide more sophisticated approaches to display and format 
tabular data within your reports. For an overview of the capabilities of different 
packages visit: hughjonesd.github.io/huxtable/design-principles.html

```{r iris-table}
iris %>%
    group_by(Species) %>%
    summarize(sepal_length = mean(Sepal.Length),
              sepal_width = mean(Sepal.Width)) %>%
    knitr::kable(caption = "Mean sepal width and length for 
three species of _Iris_.")
```

Similarly to figures, when this is processed by knitr, the table will have the tab:iris-
table label that can be used for cross-referencing.

Cross-references
If you want to refer to a certain figure or table in your report, you can use the
\@ref (label) syntax. For instance

On average _setosa_ has wider and shorter sepals than the 
other species(Fig. \@ref(fig:sepal-width-length), Table \@
ref(tab:iris-table)).

This will automatically provide the correct figure and table numbers for the sepal-
width-length figure and the iris-table table.

Reproducible reports
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Citations
You need two things: a BibTeX file that contains all the citations you use in your 
manuscript; and a CSL (Citation Style Language) file that specifies the format of your 
citations. You need to specify the names (and locations) of these files in your YAML 
header using 

bibliography: reports/myrefs.bib and csl: reports/myrefstyle.
csl. 

Software citation managers such as Zotero or Mendeley provide options to 
generate BibTeX files for your citations. CSL files exist for most journals, and can be 
downloaded from: zotero.org/styles. This is a convenient search interface provided 
by Zotero, but you do not need to use Zotero to download or use these files.

Reproducible reports
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Tamora James, University of Sheffield, UK

Scripts for reproducible code evolve over time, so keeping track of the changes that 
you make is important. You might need to access a specific version of your code to 
verify or reproduce the analysis used for a published paper, or to identify where you 
introduced a change that has caused problems in your code at a later stage. 

Anyone who has wrestled with multiple versions of a document or script named 
by appending the word “final” will know how quickly such naming conventions 
can escalate into absurdity. Version control provides a structured and transparent 
means of tracking changes to code and other files. It was designed for use in software 
development and it is equally applicable to scientific programming. By recording 
snapshots of a project at successive points in time, you can create a record of your 
project’s development while keeping your workspace clean. Version control also 
facilitates collaboration when used within project teams or when contributing to 
open source software projects.

Version control with cloud file storage services

Some cloud services such as Google Drive and Dropbox offer access to a file’s version 
history, backing up file versions for a limited time, usually 30 days, and allowing 
restoration of previous versions within this time frame. While this can be a useful 
option for managing recent changes, for example to recover a previous version of 
a document, it is not a recommended route because there is limited control over 
revisions.

Version control software

Version control software is designed to help you manage your file revisions. Version 
control software runs directly on your computer, allowing you to manage files within 
your local file system. You can also use version control software to interact with 
external copies of versioned files if you choose.

Version control software is suitable for managing files that are largely text-based, 
such as code or text files with simple formatting like Markdown or LaTeX. It can 
also be used to store versions of other files such as graphics. Tracking changes in 
documents with extended file formats such as Word documents is better done using 
their built-in revision control, although you can use version control software to store 
snapshots of these files.
 

Version control
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 Git Large File Storage (Git LFS), git-lfs.github.com, is an extension to git that 
 can be used to manage large files by storing them outside your git repository, 
 ensuring that the repository does not become unmanageably large. 

Version control software is not recommended for use with very large files such as 
data files or databases because these generate excessive storage and download 
requirements. It is better to use other storage solutions for this type of file.

A wide range of version control software, both open source and proprietary, is 
available. This guide focuses on the widely used open source software called git.

Git is a good choice because it offers flexibility in how you can use it for version 
control. You can use it as a stand-alone tool to manage files on your own computer 
and, optionally, you can use it to connect to an external service to archive your files. 
Git can be used directly or through other software such as RStudio, so it is easily 
integrated into your normal workflow.

Git is a distributed version control system, which means that each user interacts 
with a stand-alone copy of the versioned files. This stand-alone copy is called a 
repository and it is usually a folder on your computer that contains all the work for a 
particular paper or project. Individual repositories are synchronised with each other 
by exchanging information about what changes have been made. 

Version control repository hosting services

Git is sometimes confused with GitHub, which is a web-based hosting service for 
git repositories. There are a range of version control repository hosting services, 
including GitHub, GitLab, Bitbucket, and Savannah. These services allow you to 
create a remote copy of your local version-controlled project and to use it as an 
off-site backup and archive. It is easy to make your work available to collaborators 
through these services.

Version control repository hosting services offer a choice between public and private 
repositories. The former can be used for publicly accessible work, while the latter may 
be more suitable for sensitive or unpublished work. Public repositories are visible to 
anyone through the hosting service website. However, the owner of the repository 
retains control over the contents of the repository.

Version control
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 Currently, GitHub provides unlimited private repositories for educational users:  
 https://education.github.com/discount_requests/new
 Your account needs to be associated with an academic/educational
 email address.

Repository hosting services such as GitHub provide many other features including 
file preview and rendering, submitting change requests through the web browser, 
issue tracking, wiki-style documentation and website hosting. Some services offer 
desktop client software, which can be used to access your remote repository. GitHub 
is also integrated with the open access data repository service, Zenodo.

Getting started with git

 • To get started you will  need to download git: https://git-scm.com/downloads

 • Once installed, you should configure git with your name and email address  
  so that this information can be added to your version history. You will need  
  to use the command line to do this, but you only need two simple lines of 
  code:
  git config --global user.name "Your Name" 
  git config --global user.email your.email@domain.com

 • If you want to use RStudio’s git integration, go to Options/Preferences > 
  Git/SVN and make sure that the path to the git executable is correctly 
  specified.

Git and the command line
While git can be used through software with a graphical user interface such as 
RStudio, there are occasions when you will need to use the command line. These 
include configuration and setting up remote repositories. You can access the 
command line (Terminal in MacOS and Linux or Command Prompt in Windows) 
from RStudio by going to Tools > Shell…

 Git and GitHub will not only solve your version control needs, but will also 
 streamline your project management and collaboration with colleagues.
 – Francisco Rodríguez-Sánchez, Estación Biológica de Doñana (CSIC)
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10 https://github.com/BES2016Workshop/version-control accessed September 2017

Fig 4. Steps in a typical version control workflow, and how to carry out these steps 
using git at the command line or through RStudio.
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Version control workflow

In this section, you will get an overview of a basic version control workflow, get 
introduced to some of the terminology used and see some examples of how to carry 
out simple workflow tasks in git. You can find more help in the materials from the BES 
Best Practice for Code Archiving workshop 10  or by consulting some of the resources 
recommended at the end of this section. Don’t worry if this seems complicated at 
first, it can take a bit of time to get comfortable with git!

A typical version control workflow (Fig 5) includes the following steps:

1. Set up a local version control repository

2. Write some code

3. Save your script to the repository

4. Choose files to be included in the version history

5. Create a record of your changes in the version history with a suitable message e.g.  
 "Add new script to project"

6. Synchronise your changes with a remote repository

7. Repeat steps 2–7

Fig 5. A typical version control workflow
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Using git to carry out these steps: 

Setting up a repository - when you use git you interact with a set of versioned files 
called a repository. A git repository is simply a directory/folder on your computer 
with some hidden files for bookkeeping. You can create a git repository from scratch 
when you create an RStudio project. You can also clone git repositories from existing 
repositories (such as those on GitHub) or create them directly using the command 
line. If you have set up a version-controlled project in RStudio, the operations 
described below are available from the “Git” tab within the Environment/History 
panel (Fig 4).

Adding or staging files - git will only keep track of modifications to files that it has 
been asked to manage, so you need to tell git which files to include in your version 
history. You can do this by adding or staging files in your project directory.

Creating a commit - a commit is a snapshot of the changes to the repository. It forms 
part of the history of your project through time. When you create a commit using 
git you will be prompted to enter a commit message. This can be used to provide a 
description of the changes that you have made. Each commit is assigned a unique 
identifier that is stored together with the date, author, and commit message. This 
identifier can be used to specify a commit later.

Connecting to a remote repository - a local git repository allows you to track 
changes to files, storing the details in your version history and allowing you to go 
back to previous file versions, if necessary. If you want to create an external copy of 
your version history and share code with others, you should consider linking your 
repository to a remote repository. Synchronising your local repository to the remote 
repository will archive your code and provide a centralised store for your project, 
making it easy for you to share your work or to access it from another computer.

You can set up a remote repository on a hosting service such as GitHub or host it on 
your own server. If you are using a repository hosting service, make sure that you 
choose a private or public repository according to your needs. Please note that a 
public repository does not mean anyone can directly make changes to its contents; 
it simply means that the repository is publicly viewable. Private repositories are 
accessible only to those who have been granted access.

Pushing to the remote repository - this step sends the details of any commits which 
have been made locally to the specified remote repository, which can act as a backup 
of your work or a resource to share with others.
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Making use of version control

Once you have a git version control workflow in place it can be useful in several 
different ways:

Viewing your version history - the version history that you build up as you commit 
your work forms a record of the changes that you have made to your code or 
documents. This can help you to track a project’s development, understand reasons 
for past coding decisions, highlight major revisions and identify where bugs were 
introduced.

Returning to a previous commit - the real power of git will become clear when you 
need to return to a previous point in your revision history, for example to recreate 
figures for a paper or to run an analysis again. You can use the unique ID for a commit 
to tell git to return your working directory to the state captured by that commit. You 
can then work with your code as it was at that point in time.

Using version control to collaborate - there are a few alternative models for 
collaborating when using version control. If you use a distributed system such as git, 
each individual collaborator works with their own repository and you need to decide 
how to consolidate your work. A couple of possible workflows are:

1. Everyone connects their local repository to the same remote repository and must 
coordinate their changes. Changes to the central repository should be integrated 
into a user’s local repository before they submit their own changes to the remote 
repository.

2. Individual contributors create a copy or fork of the main repository and use this as 
their remote repository. They must send a request to the maintainer of the original 
repository to incorporate their changes into the repository. This model allows a 
formalised review process before changes are integrated and is often used in open 
source projects.

Going further with version control
Git is a flexible and powerful toolkit that provides a wide range of advanced features 
such as branching, stashing and tagging. These topics are beyond the scope of this 
guide, but there are many online resources where you can read more about using 
these features in your workflow.
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 Git quick reference

 Add the process of selecting a file for inclusion in version history
 
 Branch a separate set of changes to version history allowing users to 
   work in parallel on the same files

 Commit a snapshot of changes to be added to version history

 Commit message user-specified description of the changes made in a commit

 Conflict a problem arising when changes from different sources 
   cannot be combined automatically

 Fork a remote repository derived from another project that can  
   be used for collaboration

 Merge combining changes that originate from different  
   repositories or branches

 Pull an action that synchronises the local repository with
   remote changes

 Push an action that synchronises the remote repository with
   local changes

 Remote an external repository that can be synchronised with
   local changes

 Repository a directory containing the files under version control

 Stage the process of selecting a file for inclusion in version history

Version control
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Mike Croucher, University of Sheffield, UK

In many areas of research, academic papers form only a part of scholarly output and 
they frequently do not contain enough information for reproducibility and detailed 
academic discourse. A more complete description of the research requires the 
publication of custom-written computer code, details on all software used (such as 
version information) and supporting data files.

Publication of academic code and data is becoming increasingly common, but 
there are currently no generally accepted standards for where and how these 
research objects should be published. Despite obvious shortcomings 11 , it is common 
practice to upload code and data to personal websites that often disappear after 
a relatively short time. Even the more recent practice of linking to online version 
control repositories (e.g. GitHub, GitLab, Bitbucket or Savannah. See Version 
control) is insufficient, because there is no guarantee of permanence. This section 
proposes methods of code and data publication that are suitable for inclusion in the 
permanent scholarly record.

Six principles of software citation

When considering where to publish code and data, there are six principles of 
software citation:12

1. Importance - software should be considered a legitimate and citable product 
of research. Software citations should be accorded the same importance in the 
scholarly record as citations of other research products, such as publications and 
data; they should be included in the metadata of the citing work, for example in the 
reference list of a journal article, and should not be omitted or separated. Software 
should be cited on the same basis as any other research product such as a paper or 
a book, that is, authors should cite the appropriate set of software products just as 
they cite the appropriate set of papers.

2. Credit and attribution - software citations should facilitate giving scholarly credit 
and normative, legal attribution to all contributors to the software, recognising that 
a single style or mechanism of attribution may not be applicable to all software.

3. Unique identification - a software citation should include a method for 
identification that is machine actionable, globally unique, interoperable, and 
recognised by at least a community of the corresponding domain experts and, 
preferably, by general public researchers.

Archiving and citation of code and data
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4. Persistence - unique identifiers and metadata describing the software and its 
disposition should persist even beyond the lifespan of the software they describe.

5. Accessibility - software citations should facilitate access to the software itself and 
to its associated metadata, documentation, data, and other materials necessary for 
both humans and machines to make informed use of the referenced software.

6. Specificity - software citations should facilitate identification of, and access to, 
the specific version of software that was used. Software identification should be as 
specific as necessary, using version numbers, revision numbers, or variants such as 
platforms where appropriate.

Licensing

Science is an inherently iterative process where we continuously build on work that 
came before. However, due to copyright-related legalities, others are not allowed to 
make any use of your work without a ‘licence’, even if you make it publicly accessible. 
A licence is an explicit statement that grants certain uses of a work. Therefore, 
it is critical to include a licence allowing people to reuse code when publishing 
it to an online repository. For text content (such as journal publications), one of 
the many Creative Commons licences is typically used. For computer code, one 
should always attach an ‘open source’ licence when publishing it. A guide on how 
to choose appropriate licenses for your work has been published by the Software 
Sustainability Institute. 13 

Attaching a licence to your work is straightforward. Once you have chosen the 
licence you wish to use, add a file called LICENSE or LICENSE.txt to your project 
that contains the license text. The website choosealicense.com, curated by GitHub, 
contains simplified information about available licenses along with the full licence 
text for you to copy and paste into your LICENSE or LICENSE.txt file.

Recommendations

To work towards satisfying these principles, it is advisable to use research data 
repositories such as Zenodo (zenodo.org), Open Science Framework (osf.io) or 
Figshare (figshare.com) when publishing code and data. Zenodo is a service that is 
free of charge for most usage, developed by CERN, and is available to researchers from 
all research fields. Figshare is a commercial option, owned by Digital Science, which 
offers a free usage tier. Software and data deposited with either service is provided 
with a globally unique Digital Object Identifier (DOI) and storage is guaranteed for 

Archiving and citation of code and data
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a long period of time. If used in association with GitHub, they automatically record 
information such as authorship and software version. Combined, these features help 
ensure that all the software citation principles can be met for many use cases.

For instructions on how to use Zenodo to archive code, see the materials from the 
BES Best Practice for Code Archiving workshop. 14

 Many universities also have institutional repositories for free code and data   
 archiving. – April Wright, University of Iowa

Archiving and citation of code and data

11 Martin Klein et al.: Scholarly Context Not Found: One in Five Articles Suffers from Reference Rot. See Resources
12 Smith et al.: Software citation principles. See Resources
13 Chue Hong & Tim Parkinson, Choosing an open-source licence. See Resources.
14 https://github.com/BES2016Workshop/version-control accessed November 2017
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