Optimizing dispersal and corridor models using landscape genetics.

Published online
29 Aug 2007
Content type
Journal article
Journal title
Journal of Applied Ecology

Epps, C. W. & Wehausen, J. D. & Bleich, V. C. & Torres, S. G. & Brashares, J. S.
Contact email(s)

Publication language
USA & California


Better tools are needed to predict population connectivity in complex landscapes. 'Least-cost modelling' is one commonly employed approach in which dispersal costs are assigned to distinct habitat types and the least-costly dispersal paths among habitat patches are calculated using a geographical information system (GIS). Because adequate data on dispersal are usually lacking, dispersal costs are often assigned solely from expert opinion. Spatially explicit, high-resolution genetic data may be used to infer variation in animal movements. We employ such an approach to estimate habitat-specific migration rates and to develop least-cost connectivity models for desert bighorn sheep Ovis canadensis nelsoni. Bighorn sheep dispersal is thought to be affected by distance and topography. We incorporated both factors into least-cost GIS models with different parameter values and estimated effective geographical distances among 26 populations. We assessed which model was correlated most strongly with gene flow estimates among those populations, while controlling for the effect of anthropogenic barriers. We used the best-fitting model to (i) determine whether migration rates are higher over sloped terrain than flat terrain; (ii) predict probable movement corridors; (iii) predict which populations are connected by migration; and (iv) investigate how anthropogenic barriers and translocated populations have affected landscape connectivity. Migration models were correlated most strongly with migration when areas of at least 10% slope had 1/10th the cost of areas of lower slope; thus, gene flow occurred over longer distances when 'escape terrain' was available. Optimal parameter values were consistent across two measures of gene flow and three methods for defining population polygons. Anthropogenic barriers disrupted numerous corridors predicted to be high-use dispersal routes, indicating priority areas for mitigation. However, population translocations have restored high-use dispersal routes in several other areas. Known intermountain movements of bighorn sheep were largely consistent with predicted corridors. Synthesis and applications. Population genetic data provided sufficient resolution to infer how landscape features influenced the behaviour of dispersing desert bighorn sheep. Anthropogenic barriers that block high-use dispersal corridors should be mitigated, but population translocations may help maintain connectivity. We conclude that developing least-cost models from similar empirical data could significantly improve the utility of these tools.

Key words