Directed connectivity among fish populations in a riverine network.

Published online
19 Dec 2007
Content type
Journal article
Journal title
Journal of Applied Ecology
DOI
10.1111/j.1365-2664.2007.01383.x

Author(s)
Schick, R. S. & Lindley, S. T.
Contact email(s)
robert.schick@duke.edu

Publication language
English
Location
USA & California

Abstract

The addition of large water storage dams to rivers in California's Central Valley blocked access to spawning habitat and has resulted in a dramatic decline in the distribution and abundance of spring-run chinook salmon Oncorhynchus tshawytscha (Walbaum 1792). Successful recovery efforts depend on an understanding of the historical spatial structure of these populations, which heretofore has been lacking. Graph theory was used to examine the spatial structure and demographic connectivity of riverine populations of spring-run chinook salmon. Standard graph theoretic measures, including degree, edge weight and node strength, were used to uncover the role of individual populations in this network, i.e. which populations were sources and which were pseudo-sinks. Larger spatially proximate populations, most notably the Pit River, served as sources in the historic graph. These source populations in the graph were marked by an increased number of stronger outbound connections (edges), and on average had few inbound connections. Of the edges in the current graph, seven of them were outbound from a population supported by a hatchery in the Feather River, which suggests a strong influence of the hatchery on the structure of the current extant populations. We tested how the addition of water storage dams fragmented the graph over time by examining changing patterns in connectivity and demographic isolation of individual populations. Dams constructed in larger spatially proximate populations had a strong impact on the independence of remaining populations. Specifically, the addition of dams resulted in lost connections, weaker remaining connections and an increase in demographic isolation. A simulation exercise that removed populations from the graph under different removal scenarios - random removal, removal by decreasing habitat size and removal by decreasing node strength - revealed a potential approach for restoration of these depleted populations. Synthesis and applications. Spatial graphs are drawing the attention of ecologists and managers. Here we have used a directed graph to uncover the historical spatial structure of a threatened species, estimate the connectivity of the current populations, examine how the historical network of populations was fragmented over time and provide a plausible mechanism for ecologically successful restoration. The methods employed here can be applied broadly across taxa and systems, and afford scientists and managers a better understanding of the structure and function of impaired ecosystems.

Key words