Land use and elevation interact to shape bird functional and phylogenetic diversity and structure: implications for designing optimal agriculture landscapes.
Abstract
The conversion of rainforests into agriculture resulted in massive changes in species diversity and community structure. Although the conservation of the remaining rainforests is of utmost importance, identifying and creating a biodiversity-friendly agriculture landscape is vital for preserving biodiversity and their functions. Biodiversity studies in agriculture have often been conducted at low elevations. In this study, we compared the functional diversity (FD), phylogenetic diversity (PD) and community structure of birds along an interacting gradient of land use (protected rainforest, reserve buffer and agriculture) and elevation (low, middle and high) in Sri Lanka. Then, we measured the compositional change by identifying how ecological traits (dietary guild, vertical strata, body mass and dispersal ability) and conservation characteristics (forest dependence and threatened status) responded to land use types. Elevation and land use interacted with each other to shape bird FD. Depending on the elevation, FD in agriculture was either higher or similar to forest. However, PD was similar across all elevation and land use types. Bird community structure in forest was functionally and phylogenetically clustered in comparison to agriculture. Insectivorous birds declined from forest to agriculture, and so did understorey and middle-storey birds. But frugivorous and canopy birds did not change across land use types, while nectarivores, granivores and carnivores proliferated in agriculture. Forests were dominated by birds with low dispersal abilities, but birds in agriculture had more evenly distributed dispersal abilities. About half of all the individuals in agriculture were composed of forest species, several of which were threatened.