Railways redistribute plant species in mountain landscapes.

Published online
25 Oct 2021
Content type
Journal article
Journal title
Journal of Applied Ecology

Irfan Rashid & Haq, S. M. & Lembrechts, J. J. & Khuroo, A. A. & Pauchard, A. & Dukes, J. S.
Contact email(s)

Publication language
Asia & Jammu and Kashmir & India


The significant portion of global terrestrial biodiversity harboured in the mountains is under increasing threat from various anthropogenic impacts. Protecting fragile mountain ecosystems requires understanding how these human disturbances affect biodiversity. As roads and railways are extended further into mountain ecosystems, understanding the long-term impacts of this infrastructure on community composition and diversity gains urgency. We used railway corridors constructed across the mountainous landscapes of the Kashmir Himalaya from 1994 to 2013 to study the effects of anthropogenic disturbance on species distributions and community dynamics. In 2014 and 2017, we collected vegetation data along 31 T-shaped transects laid perpendicular to the railway line, adopting the MIREN (Mountain Invasion Research Network) road survey methodology. Plant communities shifted significantly from 2014 to 2017, potentially because of an ongoing species redistribution after railway construction, driven mainly by declines in both native and non-native species richness, and an increasing abundance of a few non-native species, especially in areas away from the railway track. These patterns indicate an advancing succession, where initially-rare-pioneer species are replaced by increasingly dominant and often non-native competitors, and potentially suggest a trend towards delayed local extinctions after the disturbance event. Native and non-native species richness was negatively correlated with elevation, but that relationship diminished over time, with the abundance of non-natives significantly increasing at higher elevations. Synthesis and applications. Transport corridors seem to facilitate the spread of non-native species to higher elevations, which has serious implications considering the warming mountain tops. Our results indicate that the plant communities next to railways do not reach equilibrium quickly after a disturbance. More than 10 years after railway establishment within Kashmir Himalaya, succession continued, and signs pointed towards a landscape increasingly dominated by non-native species. Our study indicates that the single disturbance event associated with constructing railway in this Himalayan region had large and long-lasting effects on plant communities at and around this transport corridor and suggests the need for a long-term region-wide coordinated monitoring and management program.

Key words