Agricultural intensification erodes taxonomic and functional diversity in Mediterranean olive groves by filtering out rare species.

Published online
06 Nov 2021
Content type
Journal article
Journal title
Journal of Applied Ecology
DOI
10.1111/1365-2664.13970

Author(s)
Tarifa, R. & Martínez-Núñez, C. & Valera, F. & González-Varo, J. P. & Salido, T. & Rey, P. J.
Contact email(s)
atricapilla.15@gmail.com

Publication language
English

Abstract

Agri-Environmental Schemes (AES) have been proposed to mitigate the impact of agriculture on both taxonomic and functional biodiversity. However, a better knowledge of the mechanisms involved in the loss of agrobiodiversity is needed to implement efficient AES. An unbalanced effort on research towards arable lands compared to permanent crops, and on fauna relative to plants, is patent, which limits the generalization of AES effectiveness. We evaluated the effects of agricultural management and landscape simplification on taxonomic and functional diversity of the ground herb cover of 40 olive groves. We use a recently developed approach based on Hill numbers (rare, common and dominant species based) to analyse taxonomic and functional dissimilarity between farms with contrasting agricultural practices, and its potential attenuation by landscape complexity. We further explore the filtering effect of agricultural intensification on functional traits, and the relationship between functional and species richness across landscapes. We found that taxonomic and functional dissimilarity of herb assemblages between intensively and low-intensively managed fields was mainly due to rare species. Dissimilarity decreased as landscape complexity increased, evidencing that complex landscapes attenuate the impact of agriculture intensification on herb assemblage composition. Agricultural intensification favoured more functionally homogeneous assemblages and disfavoured the herbs pollinated by insects, while it did not seem to affect wind-pollinated species. Overall, functional richness increased exponentially with species richness across landscapes, but the latter was insufficient to drive any clear enhancement in functional richness in simple landscapes. In contrast, high species richness accelerated the enhancement in functional richness in intermediate and complex landscapes. These results highlight the functional filtering that intensive agriculture has generated for decades in homogeneous olive-dominated landscapes. Synthesis and applications. Herb cover is essential to support the fauna of permanent croplands and their sustainable production. Hence, Agri-Environmental Schemes (AES) in these croplands should promote management practices favouring the diversity and functionality of herb assemblages. Such AES should be particularly prioritized in homogeneous landscapes, where ground herb cover composition and function has long been homogenized to a great extent.

Key words